Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation.
نویسندگان
چکیده
The tumor suppressor gene p53 controls cellular response to a variety of stress conditions, including DNA damage and hypoxia, leading to growth arrest and/or apoptosis. Inactivation of p53, found in 40-50% of human cancers, confers selective advantage under hypoxic microenvironment during tumor progression. The mole rat, Spalax, spends its entire life cycle underground at decidedly lower oxygen tensions than any other mammal studied. Because a wide range of respiratory adaptations to hypoxic stress evolved in Spalax, we speculated that it might also have developed hypoxia adaptation mechanisms analogous to the genetic/epigenetic alterations acquired during tumor progression. Comparing Spalax with human and mouse p53 revealed an arginine (R) to lysine (K) substitution in Spalax (Arg-174 in human) in the DNA-binding domain, identical to known tumor associated mutations. Multiple p53 sequence alignments with 41 additional species confirmed that Arg-174 is highly conserved. Reporter assays uncovered that Spalax p53 protein is unable to induce apoptosis-regulating target genes, resulting in no expression of apaf1 and partial expression of puma, pten, and noxa. However, cell cycle arrest and p53 stabilization/homeostasis genes were overactivated by Spalax p53. Lys-174 was found critical for apaf1 expression inactivation. A DNA-free p53 structure model predicts that Arg-174 is important for dimerization, whereas Spalax Lys-174 prevents such interactions. Similar neighboring mutations found in human tumors favor growth arrest rather than apoptosis. We hypothesize that, in an analogy with human tumor progression, Spalax underwent remarkable adaptive p53 evolution during 40 million years of underground hypoxic life.
منابع مشابه
The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death
The blind subterranean mole rat, Spalax ehrenbergi, is a model organism for hypoxia tolerance. This superspecies have adapted to severe environment by altering an array of hypoxia-mediated genes, among which an alteration in the p53 DNA binding domain (corresponding to R174K in humans) that hinders its transcriptional activity towards apoptotic genes. It is well accepted that apoptosis is not t...
متن کاملLack of Mutation in the Hot Spot Region of the Human P53 Gene in a Number of Iranian Hepatocellular Carcinoma Patients
Objectives and Background: Mutation directed inactivation of the tumor suppressor gene p53 have been found incountries with high frequency for hepatocellular carcinomas (HCCs). Our goal in the present study was screening of the p53 gene in tumor tissues from HCC affected individuals in southwest Iran for putative mutations in exons 7 and 8 that are known as hot spot regions. Materials & Met...
متن کاملLipid Profile and Serum Characteristics of the Blind Subterranean Mole Rat, Spalax
BACKGROUND Spalax (blind subterranean mole rat), is a mammal adapted to live in fluctuating oxygen levels, and can survive severe hypoxia and hypercapnia. The adaptive evolution of Spalax to underground life resulted in structural and molecular-genetic differences comparing to above-ground mammals. These differences include higher myocardial maximal oxygen consumption, increased lung diffusion ...
متن کاملP53 antigen expression in cutaneous Melanoma and its relation to tumor thickness
Background: P53 tumor suppressor gene mutation is one of the most common genetic alterations in human malignancies. The mutated from of the gene is stable and can be detected with immunohistochemistry methods. There is much controversy about the expression rate of this gene in malignant melanoma. Objective: To determine the frequency of the P53 antigen expression by sex, age, type and thickness...
متن کاملAdaptive evolution of heparanase in hypoxia-tolerant Spalax: gene cloning and identification of a unique splice variant.
Heparan sulfate (HS) side chains of HS proteoglycans bind to and assemble extracellular matrix proteins and play important roles in cell-cell and cell-extracellular matrix interactions. HS chains bind a multitude of bioactive molecules and thereby function in the control of multiple normal and pathological processes. Enzymatic degradation of HS by heparanase, a mammalian endoglycosidase, affect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 33 شماره
صفحات -
تاریخ انتشار 2004